
July 2011 FoxRockX Page 7

Talking to Microsoft Office
Office 2007 and 2010 brought some changes in working with Office
applications from VFP.

Tamar E. Granor, Ph.D.

While most Office Automation code moves
smoothly from older versions to the latest, some
changes in recent versions do have an impact on
the process of automating the Office apps. One
change in Office 2010 has major implications for
applications that need to use Office's applications
programmatically.
I learned how to automate the Office applications
(and wrote a book about it) using Office 2000.
Almost everything I knew made the transition
to the next two versions of Office (Office XP and
Office 2003). After that, the transition wasn't quite
as smooth.

With Office 2007, Microsoft changed the user
interface and the file format. Office 2010 introduced
a new way of installing that breaks automation.

In this article, I'll take a look at changes in Office
2007 and 2010 that have an impact on Automation.

Object models
Each new version of Office has brought changes
to the object model, with some properties, events
and methods (PEMs) being deprecated (Microsoft-
ese for "discouraged") or removed and new
ones being introduced. Table 1 provides links
to "What's New" pages in MSDN for the core
Office applications (Word, Excel, PowerPoint and
Outlook). Each of these pages has three links: one
for a list of new objects, one for a list of new PEMs
in existing objects, and one for a list of changed,
hidden, or removed PEMs. (To find corresponding
articles for the other Office applications, drill
down from http://msdn.microsoft.com/en-us/
library/cc313152%28v=office.12%29.aspx; choose
the product you're interested in, and then choose
the Developer Reference for that product. In most
cases, the home page for the developer reference
includes a What's New link.)

Table 1. These articles point to the version changes in the
object model for the Office apps.

Application Object Model changes article
Excel http://msdn.microsoft.com/en-us/

library/ff846371.aspx
Outlook http://msdn.microsoft.com/en-us/

library/ff870434.aspx

Application Object Model changes article
PowerPoint http://msdn.microsoft.com/en-us/

library/ff746843.aspx
Word http://msdn.microsoft.com/en-us/

library/ff841699.aspx

Getting Help
One of the tricky things about automating Office has
always been finding the documentation. In Office
2003 and earlier, the VBA Help files for Office aren't
automatically installed. For Office 2003, by default,
they're installed as "on first use." But once you get
them installed, each exists as a separate Help file
(.CHM). I find them so useful that I actually keep a
shortcut to each on my desktop.

For Office 2007 and 2010, the situation is a little
more complicated. The information (no longer
called "VBA Help," but "Developer Reference") is
installed as part of the Help file. However, these
versions default to using Office.COM as the primary
source of Help. Whether you're using Office.COM
or the local version, you access the information by
choosing "Developer Reference" from the Search
dropdown in Help for the specified application, as
in Figure 1. This brings up the Developer Reference,
shown in Figure 2.

Figure 1. To see VBA Help from an Office 2007 or Office 2010
application, open Help from inside the application, then choose
Developer Reference either from Office.com or from the local
computer.

Page 8 FoxRockX July 2011

The object models and VBA for each application
are fully documented in both the local file and
the website, but in my view, the usability of the
information is significantly reduced from earlier
versions. The Office 2003 and earlier VBA Help files
provided a clickable visual representation of the
object model, and the index let you choose whether
to look at collections, objects, properties, methods or
events. In Office 2007 and 2010, the diagram is gone
for some of the applications and well-hidden for the
others (try searching inside Help for "<Application
> Object Model Reference", substituting the actual
application name for "<Application>") and the table
of contents shows you only objects. Turning on the
Table of Contents (by clicking the "book" button in
the toolbar) helps some; Figure 3 demonstrates.

Turning on the Developer menu
When working on Automation code, you may
want access to the various developer tools available
inside Office. In particular, since one of the
strategies for writing automation code is recording
a macro, getting into the Visual Basic Editor (VBE)
to examine and edit your macros is handy.

In Office 2003, you can open the VBE from the
main menu (Tools | Macro | Visual Basic Editor)
or with the Alt+F11 keystroke. In Office 2007 and
2010, Alt+F11 still works, but the menu option is a
little harder to find. On the View tab of the ribbon,
choose Macros | View Macros. Then pick a macro
and click Edit. (Of course, this means you have to
have at least one macro to do this.)

However, there's an optional Developer tab for
the ribbon that provides direct access to the VBE as
well as to other development-related options like
the Add-ins dialogs. The steps to turn on that tab
are different for Office 2007 and Office 2010.

In Office 2007, click the Office button and
click the "XX Options" button (where "XX" is the
application name) at the bottom of the menu. In the
dialog, click Popular. (It may already be selected as
it's the first option.) Check Show Developer tab in
the Ribbon. Click OK.

In Office 2010, choose File | Options. In the
dialog, click Customize Customize Ribbon. In the
right-hand listbox (Customize the Ribbon), find
Developer and check it. Click OK.

Click to Run breaks automation
Some versions of Office 2010 offer a new kind of
installation called "Click to Run." With Click to Run,
Office (or the chosen Office application) runs in a
virtual machine, downloading features as needed.
Office applications installed as Click to Run cannot
be automated.

Fortunately, all versions of Office 2010 that
offer Click to Run installation also offer standard
installation. Be sure to specify that standard
installation of Office is required for any application
that automates Office.

File format issues
With Office 2007, Microsoft introduced XML-
based file formats for Office files. The new formats
use extensions ending in "X," such as "DOCX" for
Word, and "XLSX" for Excel. By default, the Office
applications save documents in the new formats.

This format change can break existing
Automation code, if that code assumes that you're
creating the older format, and acts accordingly.
It also can break user expectations. For example,
suppose you have code that creates a spreadsheet,
saves it, and emails it to a customer. Using Office
2003 or earlier, the spreadsheet would be in XLS
format; in Office 2007 or later, it will arrive in XLSX
format. (In both cases, that's assuming you don't
explicitly specific the file format.) That may or may
not be a problem.

You can, of course, specify the file format
you want. To do so, pass the optional FileFormat
parameter to the SaveAs method. When the

 Figure 2. The home page of the Developer Reference for
Word 2010 is fairly bare, but does give you access to the entire
file.

Figure 3. Using the Table of Contents helps to make the Devel-
oper Reference easier to use.

July 2011 FoxRockX Page 9

parameter is omitted, SaveAs uses the default file
format for that application. Be aware that the user
controls the default, so for example, Word 2010 can
be set to use the DOC format rather than the DOCX
format. For that matter, if the user has installed
the Office 2007 Compatibility Pack, Word 2003
can be set to use the DOCX format by default. The
takeaway here is that, if the file format matters, you
need to explicitly specify it.

Dealing with XLSX files
The biggest file format issue isn't exactly an
automation issue, but one solution to the problem
uses automation. In Excel 2007 and Excel 2010,
if a user saves a workbook in the "Excel 97-2003
Workbook (*.xls)" format, the resulting workbook
cannot be imported into VFP using either APPEND
FROM or IMPORT. Instead, you get the error
message "Microsoft Excel file format is invalid."
The same problem occurs if the file was created
using Automation, saving it in the "Excel 97-2003
Workbook (*.xls)" format by passing 56 (xlExcel8)
for the file format parameter. In fact, the problem
even occurs if an XSLX file is opened in Excel 2003
(using the Office Compatibility Pack) and resaved
in the older format from there.

The key element is that the file originates in
the XML format; the problem is in the conversion
from XLSX to XLS. Microsoft Knowledge Base
article #954318 (http://support.microsoft.com/
kb/954318) explains that the issue is additional
content in the file to avoid losing some Excel 2007
features. In my view, this makes it an Excel bug;
saving to an older format normally does lose newer
features. Creating a non-compatible file is not the
right answer.

In some cases, the problem can be solved with
Automation. Open the file and then use SaveAs
and choose to save in Excel 95 format, passing 39
(xlExcel5) for the file format parameter. Files saved
this way work with APPEND FROM and IMPORT.
The same approach can be used to convert XLSX
files for use with APPEND FROM and IMPORT.

There is one caveat: Excel 95 files are limited to
16,384 rows. Excel 97-2003 raised the limit to 65,535.
Excel 2007 and later support over a million rows
using the new XML-based format. So before saving
in the older format, you'll want to check the number
of rows used. If necessary, break the file into a set
of smaller files for import. The program in Listing
1 performs this process; just pass the file name for
the original workbook; the code is included in the
downloads for this article as ConvertToExcel5.
PRG.
Listing 1. This routine opens a specified workbook and
resaves it in Excel 95 (Excel 5.0) format. If necessary, it breaks
the workbook up into multiple workbooks, each small enough to
be saved in that format.
* Open a specified workbook, and if it's
* stored in a format later than Excel 95,
* resave it in the older format. If necessary,

* break it into multiple workbooks.
* Several caveats:
* 1) Works only on the active sheet of the
* workbook.
* 2) If it's necessary to break the
* worksheet up, this code
* assumes there are no formulas working
* across multiple rows.
* Return the number of resulting workbooks.
* Return 0 if no change is needed.
* Return a negative value to indicate a
* problem.

LPARAMETERS cFileWithPath

LOCAL oExcel, oWorkbook, nWorkbookCount,
cBaseName, cPath

TRY
 oExcel = CREATEOBJECT("Excel.Application")
CATCH
 oExcel = .null.
ENDTRY

IF ISNULL(m.oExcel)
 RETURN -1
ENDIF

TRY
 oWorkbook = ;
 oExcel.Workbooks.Open(m.cFileWithPath)
CATCH
 oWorkbook = .null.
ENDTRY

IF ISNULL(m.oWorkbook)
 RETURN -1
ENDIF

* If we get this far, we've opened Excel and
* the workbook. Now figure out whether we need
* to convert.
cPath = JUSTPATH(m.cFileWithPath)
cBaseName = JUSTSTEM(m.cFileWithPath) + "XL5"

DO CASE
CASE oWorkbook.FileFormat <= 39
 * Excel 5 or earlier.
 * Nothing to do.
 nWorkbookCount = 0

CASE ;
 oWorkbook.ActiveSheet.UsedRange.Rows.Count ;
 <= 16384
 * Just save as. Extension is automatic.
 cFileName = FORCEPATH(m.cBaseName, m.cPath)
 oWorkbook.SaveAs(m.cFileName, 39)
 nWorkbookCount = 1

OTHERWISE
 * Need to break up into multiple workbooks.
 LOCAL nTotalRows, nSheetsNeeded, nSheet
 LOCAL oNewBook, nLastColumn, oRangeToCopy
 WITH oWorkbook.ActiveSheet

 nTotalRows = .UsedRange.Rows.Count
 nSheetsNeeded = ;
 CEILING(m.nTotalRows/16384)

 nLastColumn = .UsedRange.Columns.Count

 FOR nSheet = 1 TO m.nSheetsNeeded
 oNewBook = oExcel.Workbooks.Add()
 oRange = .Range(.Cells((m.nSheet-1)*;
 16384 + 1, 1), ;
 .Cells(m.nSheet * 16384, ;

Page 10 FoxRockX July 2011

 m.nLastColumn))
 oRange.Copy(;
 oNewBook.ActiveSheet.Range("A1"))

 cFileName = FORCEPATH(m.cBaseName + ;
 "_" + TRANSFORM(m.nSheet), m.cPath)
 oNewBook.SaveAs(m.cFileName, 39)
 oNewBook.Close()
 ENDFOR

 ENDWITH

 nWorkBookCount = m.nSheetsNeeded
ENDCASE

oWorkBook.Close()
oExcel.Quit()

RETURN m.nWorkBookCount

This approach is appropriate if the workbook
is essentially a data table. If the workbook contains
formulas that need to work across all rows (or large
groups of rows), breaking the workbook up will be
a problem.

If you don't have Excel available to resave the file
or you have formulas that work across large groups
of rows, there are a couple of other solutions. One
option is to export the data from Excel in the CSV
(comma-separated values) format, and append that
in VFP, as in Listing 2.

Listing 2. One way to handle XLSX files is to save them as
CSV and then use APPEND FROM or IMPORT on the result.
* Assumes you've already created the CSV file
* and that the filename is stored in cFileName
APPEND FROM (m.cFileName) TYPE CSV

If you can't control the format you receive and
can't count on having Excel available, the final
choice is to use the Excel ODBC driver to open the
file and extract the data. To use this approach, you
must have the driver installed. It's available for
download from Microsoft (search for "2007 Office
System Driver: Data Connectivity Components").
Listing 3 shows some generic code to do the import;
you need to specify the fully-pathed filename
for the Excel file and the alias for the cursor or
table to which you want to append the results.
It's included in the downloads for this article as
ExcelAppendODBC.PRG

Listing 3. Another way to handle Excel files is to use the Excel
ODBC driver to open them.
* Open and import an Excel file using
* the Excel ODBC driver. Put the results
* in the specified table/cursor.
LPARAMETERS cFileName, cDestinationAlias

LOCAL cConnStr, nHandle, cSQL

DO CASE
CASE VARTYPE(m.cFileName) <> "C" OR ;
 EMPTY(m.cFileName)
 * File name not specified
 ERROR 11

CASE NOT FILE(m.cFileName)
 * Specified file doesn't exist
 ERROR 1, m.cFileName

OTHERWISE
 * All is well with file. Proceed.
 cConnstr = [Driver=] + ;
 [{Microsoft Excel Driver] + ;
 [(*.xls, *.xlsx, *.xlsm, *.xlsb)};] + ;
 [DBQ=] + m.cFileName

 nHandle = SQLSTRINGCONNECT(m.cConnStr)
 IF m.nHandle > 0
 TEXT TO m.cSQL NOSHOW
 SELECT * FROM "Sheet1$"
 ENDTEXT

 IF SQLEXEC(m.nHandle, m.cSQL, ;
 "csrResult") > 0
 SELECT (m.cDestinationAlias)
 APPEND FROM DBF("csrResult")
 ELSE
 ERROR ;
 "Unable to extract data from " + '
 m.cFileName
 ENDIF

 * Disconnect
 SQLDISCONNECT(m.nHandle)
 ELSE
 ERROR "Unable to connect to Excel"
 ENDIF
ENDCASE

RETURN

The one complication with this approach is that
the field names in the destination alias must match
the column names in the Excel file.

The bottom line
If you've been automating older versions of Office,
the more recent versions can introduce some new
issues. ("Click to Run" installation seems to be the
most frequently encountered problem.) But there's
nothing that can't be overcome with either some
code or some user training.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numerous
Visual FoxPro applications for businesses and other
organizations. She currently focuses on working with other
developers through consulting and subcontracting. Tamar
is author or co-author of nearly a dozen books including
the award winning Hacker’s Guide to Visual FoxPro,
Microsoft Office Automation with VisualFoxPro and Taming
Visual FoxPro’s SQL . Her latest collaboration is Making
Sense of Sedna and SP2. Her books are available from
Hentzenwerke Publishing (www.hentzenwerke.com). Tamar
is a Microsoft Support Most Valuable Professional and one
of the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

